Carlo Macchiavello

Tutto è possibile

Tag: 4k Pagina 1 di 2

Video FULL FRAME : la prossima illusione Cinematic Look

THE VILLAGE, Roger Deakins, 2004, (c) Buena Vista

Tanti filmaker moderni sono nati con le fotocamere, e per tale ragione si sono sempre lamentati che non avevano telecamere fullframe, che le telecamere non sono cinematiche perchè sono croppate… Ho scritto tanti articoli relativi al crop e al motivo per cui non è mai stato un problema finchè non è stato inventato dal marketing di un noto brand per vendere le sue fotocamere Fullframe rispetto alla concorrenza Aps-c.

Il cinema è nato 16 e 35 mm ma con scorrimento verticale, quindi con una dimensione assimilabile al aps-c, e il concetto di crop non c’è mai stato, si aveva una lente e la si usava / usa per le necessità o per le scelte estetico/narrative. Alternativa ad esse c’è stato il 70mm per contrastare la televisione, e per dare una resa particolare di dettaglio e qualità delle immagini, ma a causa delle dimensioni maggiori della camera e dei caricatori di pellicola 70mm, che oltretutto aveva una durata minore per caricatore, era meno diffuso e meno usato del 35mm e s35mm classico.

Oggi con l’avvento di cineprese Arri, Panasonic, Panavision, Sony LF (largo formato) i filmaker si lamentano che non possono avere cineprese economiche con quel formato, non pensando che non è il sensore grande a fare il cosiddetto Cinematic Look.

Perchè la nascita della seconda ondata del digitale con la 5D ha fatto credere questo mito del sensore grande?

Chi mi conosce sa che sono un pragmatico, mi piace scherzare, ma poi mi piace analizzare seriamente e tecnicamente i fatti.

Prima della 5D tutti i sistemi di ripresa erano telecamere a sensore piccolo, pensate per il video, quindi con tutta una serie di difetti, che la 5d, per quanto non fosse nata per il video, non aveva.

La classica telecamera degli anni 2000 aveva i seguenti difetti :

Sensore piccolo

Il sensore piccolo ha una serie di limiti:

  • il primo è relativo alla superficie, di solito da 1/3 a 2/3 di pollice, la quantità di luce che poteva raccogliere era poca, quindi per funzionare correttamente spesso doveva applicare forti rapporti di guadagno elettronico, contrastando spesso troppo le immagini, portando facilmente a bruciare le alte luci e chiudere le ombre o sporcandole con forte rumore digitale.
  • Il secondo difetto del sensore piccolo è che mettendo uno zoom davanti al sensore, questo deve essere molto spinto come grandangolare, altrimenti non è possibile fare dei totali nei luoghi più stretti, facendo si che la maggior parte delle immagini hanno distorsioni più o meno spinte, allargando le immagini,da qui il detto “la Tv ingrassa”.
  • Il terzo difetto è che un sensore piccolo, soprattutto pre smartphone, ondata tecnologica che ha spinto molto di più la ricerca nella direzione dell’ottimizzazione dell’immagine sulle piccole dimensioni, offriva una qualità di dettaglio fine molto relativa, ma all’epoca bastava l’HD visto su monitor di qualità relativa.
Immagine con Video Look

Tutte le telecamere lavoravano in uno spazio colore rec601, con poco contrasto tra luce e ombra, non avevano ancora diffuso bene il rec709 che gestisce un contrasto migliore, quindi spesso veniva applicato uno sharpness artificiale alle immagini che creava quello che oggi chiamano il “retro look” o il “vhs look”, cioè degli aloni più o meno intensi attorno agli oggetti con un minimo di contrasto.

  • Il primo difetto è dato dalla bassa gamma dinamica catturabile da quel tipo di sensori, unita a contrasto forte, e non c’era molto da fare, quasi tutte le camere erano costruite in quel modo.
  • Il secondo difetto era causato da pessimi display che portavano la maggior parte degli operatori a alzare lo sharpness al massimo nell’illusione di avere immagini più nitide, ma non lo erano e quindi purtroppo diventavano più artificiali le immagini.
  • il terzo difetto era dato dall’uso delle telecamere che permettendo movimenti più “sporchi” per la natura della cattura del movimento con i ccd portava ad una diversa estetica del movimento e dell’uso della camera.
  • il quarto difetto, terribile, era/è l’interlacciatura, che vista su una televisione è invisibile, ma vista su computer o altri media sbriciola in modo orribile le linee degli elementi in movimento creando difetti digitali antiestetici, e la sua rimozione portava alla perdita del 50% della già bassa definizione verticale.

Cosa ha offerto la DSLR che era improbabile poter fare al tempo con le telecamere.

  • Sensore con minore crop (Non crop zero, che non esiste) = lenti normali e rese più naturali della prospettiva.
  • Focali più lunghe = più possibilità di sfuocare lo sfondo e separare soggetto e sfondo senza conoscere bene i principi di illuminazione.
  • Gamma dinamica maggiore = più possibilità di espressione della luce, e allo stesso tempo la lettura più naturale della realtà.
  • Immagini più morbide = maggior risoluzione di cattura offre meno sharpness finto, ma più nitidezza reale (uso i due termini per distinguere l’effetto digitale da quella reale della lente).
  • Lenti intercambiabili di qualità possibile maggiore.

Questo tipo di vantaggi fu ciò che fece esplodere la “moda” delle dslr a fine anni 2000, moda che doveva restare nella fascia bassa, per chi non aveva accesso a camere di maggior livello, e invece fu poi introdotta anche nel cinema di fascia alta dove spesso si usano le mirrorless come cam C, o Crash cam che anche se vengono distrutte il problema non sussiste contro perdere una cinepresa da 100k. Oggi fin troppo spesso si vedono comprare le fotocamere come telecamere, e scoprire dopo tutti i limiti e i difetti delle stesse, in primis l’ergonomia, l’autofocus continuo, la registrazione spesso più compressa, limiti nell’uso del viewfinder, rolling shutter accentuato, etc etc.

Oggi il mito della largo formato cozza con tanti dettagli a cui le persone non pensano, che non tange i professionisti o le LF di alto livello.

  • Costo notevolmente maggiore del corpo macchina.
  • Maggiori consumi batteria e surriscaldamenti varii.
  • Lenti di nuovo formato notevolmente più costose.
  • Maggior dimensione di sensore significa una serie di scelte diverse sulle lenti con possibili più problemi di gestire e mantenere i fuochi durante il movimento.
  • Necessità di formati di registrazione a qualità più alta per raccogliere la maggior qualità catturata.

Il largo formato è interessante soprattutto per creare film dove gli effetti visivi ne fanno da padroni, perchè alzare semplicemente la risoluzione di cattura (4k,6k, 8k) a fronte della stessa dimensione di sensore spesso comporta un problema di gestione della luce, mentre per la maggior parte delle produzioni non comporta un cambiamento tale da giustificare il recente entusiasmo per tale formato.

 

6(k) motivi per cui la Pocket 6k è migliore della Pocket 4k

Argomento caldo di questi giorni è l’uscita della Pocket6k prima di IBC 2019, e la normale corsa al upgrade alla sorella della Pocket4k, perchè se ha 6k è sicuramente meglio della 4k, o forse no?

In un primo articolo ho detto per chi è meglio la pocket4k e in questo possiamo vedere per chi la Pocket6k può essere meglio. Non a caso Blackmagic ha scelto di fare due sorelle simili e diverse in alcune caratteristiche, sia per seguire il passo tecnologico a cui le altre case stavano approcciando, cioè il 6k, sia per prendere un altro mercato di filmaking interessante, sia per offrire ulteriori possibilità di scelta nella cattura dell’immagine.

1) Risoluzione

La Pocket4k è limitata al 4k DCI mentre la Pocket6k è una camera che offre molte opzioni di risoluzione partendo dal 6k raw, diversi fattori di ripresa anamorfica a scendere (in raw escluso il 4k, per motivi x, ma disponibile come prores). Ovviamente uno dei principali motivi per cui scegliamo la 6k è avere maggior risoluzione di lavoro su cui fare crop, scalare, ottimizzare angolazione etc

L’alta risoluzione unita alla bassa compressione dei dati pone la camera come ottima scelta per girare clean plate, materiale da cui trarre texture e fotogrammetria ad alta risoluzione.

2) Mount EF

Per alcune persone il mount EF è uno svantaggio, tiraggio più lungo quindi meno possibilità di usare lenti di mount diverso; dall’altra il Mount EF insieme al Mount Ai Nikon offrono uno dei parchi lenti più ampi della storia fotografica e video, quindi una camera con mount EF significa poter accedere a lenti con elettronica o manuali di alto livello. Inoltre grazie alla diffusione delle camere canon in ambito video, la disponibilità di tali lenti anche le parco lenti personale dei filmaker è spesso molto ampia.

3) Circuiti di Gain migliorati

La dimensione dei sensori è una lotta da sempre, da quanto è stato inventato il concetto di crop, dico inventato perchè è sempre esistito il concetto, ma nessuno si faceva il problema, addirittura oggi leggo che le medio formato hanno il crop inverso… come se fossero le stesse lenti del formato 35 fotografico.

La Lumix GH5 ha un sensore m4/3 da 17.3 x 13 mm, la Pocket 4k ha un sensore Quattro Terzi da 18,96 mm x 10 mm, Aps-c Canon è 22.2 x 14.8 mm, la 6k monta un sensore Super 35 (23,10 mm x 12,99 mm), quindi leggermente più grande, il che offre un fattore di crop leggermente inferiore al primo.

Quello che importa in questo caso è il fattore di rapporto tra la dimensione del sensore e la risoluzione, per una questione fisica, se il sensore resta piccolo ma lo dividiamo in più fotorecettori, a parità di dimensione un sensore più risoluto necessita (teoricamente) più luce, quindi avendo una risoluzione superiore, i pochi mm di vantaggio fanno si che si possa ottenere senza grandi difficoltà una luminosità pari a quella raccolta in 4k dalla Pocket4k, la differenza tra le due camere di rapporto di luce guadagno viene allineato dai nuovi circuiti di guadagno.

4) Usarla per raffiche fotografiche Raw in alta risoluzione

La camera può essere usata in modo agile (come la Pocket4k) per girare sequenze raw e poi estrapolare i frame raw da usare come fotografie, con la differenza che la Pocket6k offre fotogrammi a 21megapixel di altissima qualità. In più di una occasione ho usato questa tecnica per catturare raffiche senza limiti di durata ad alta qualità.

5) Attualmente la 6k raw più economica sul mercato e già in vendita

Pur essendoci sul mercato diverse camere che registrano in 6k, a costi molti più alti, attualmente è la prima a fornire un 6k a bassa compressione (prores) o raw (Braw) è la Pocket6k, le alternative attualmente usano compressioni molto aggressive o permettono il salvataggio in raw soloc on costosi moduli esterni.

6) Sulla Pocket6k si può avere uno Speedbooster interno

L’azienda Lucadapter, che produce una variante da inserire all’interno della UMP, stia pensando di produrre la stessa cosa per la pocket6k, ma per ora è ancora in fase di kickstarting, mentre per la pocket4k esistono sia i generici che quello dedicato da tempo, il vantaggio di avere un elemento interno evita giochi degli adattatori e meno possibili errori di allineamento delle lenti.

7) 4K reale oltre la matrice di Bayer

Il 4k ottenuto da un sensore 4k non è realmente un 4k a causa dei sensori con la matrice di Bayer, che nella fase di De-Bayering riduce la risoluzione effettiva, quindi il 6K è la soluzione ideale se si vuole ottenere il massimo della risoluzione reale.

Quest’ultima affermazione è stata aggiunta solo per completezza, ma sinceramente la trovo solo una fisima da pixel peeper.

Naturalmente la mia lista è relativa ad un discorso puramente generale, ognuno poi ha punti di vista diversi, personalmente la maggior parte di questi punti non mi tange, abituato a girare in dng non compressi o altri formati raw molto onerosi, ho usato la prima Alexa con il firmware 0.85 che registrava fullHd prores, senza audio, e ho avuto tante esperienze varie per cui … penso che queste due macchine siamo miracoli regalati alla massa.

the Best of Sharpness, l’acutezza, la nitidezza e tutto il resto… o forse no

Nippon Kogaku 35mm 2.0 su sensore 4k

Oggi con la fisima della nitidezza e della definizione inoculata dal marketing, se non abbiamo un telefono che riprende in 8k (per mostrarlo sul display magari neanche fullhd, compresso), se non facciamo riprese panoramiche da 12k (combo di Newyork girato con 3 red 8k), non abbiamo immagini definite.

Dall’altra parte abbiamo persone che fanno studi scientifici sulla capacità visiva dell’occhio e confrontando in modo diretto le immagini delle diverse camere dimostrano che a parità di pixel non è detto che abbiamo realmente immagini più definite, anzi in certi casi diventa il contrario, motivo per cui Arriflex con la sua Alexa, 2,7k e 3.4k in openGate spesso offre immagini più nitide di quelle catturate con cineprese digitali 8k.

Senza fare il pixel peeper, lasciando queste seghe mentali ad altre persone, visto che il mio obiettivo primario è la narrazione per immagini, vediamo di capire brevemente quali sono i fattori che permettono di esprimere al meglio la nitidezza e l’acutezza di una ripresa (indipendentemente da fattori umani).

fattore 1 : la lente

 

La lente può (condizionale) determinare la qualità dell’immagine perchè è il sistema con cui si cattura la luce, la focalizza e la proietta sul piano focale (pellicola o sensore). La qualità delle lenti oggi è abbastanza lineare, per cui la differenza può essere la luminosità della lente, ma usata nel modo corretto (vedi il fattore 2), una lente media offre una buona definizione senza dare grandi limitazioni sulla nitidezza, a patto che :

  • la lente sia pulita e non abbia elementi estranei sopra
  • che non ci sia luce laterale (non protetta da paraluce e mattebox) che abbatte il contrasto
  • che non ci siano filtri di bassa qualità che riducono la definizione iniziale della lente, spesso si usano filtri neutri di qualità non ottimale, che riducendo la luce la diffondono togliendo nitidezza all’immagine originale.
  • che sia correttamente calibrata per proiettare sul sensore l’immagine (alcune lenti soffrono di problemi di pre/back focus, ovvero l’immagine viene proiettata poco prima o poco dopo il piano focale, quindi per centesimi di mm di tolleranza l’immagine è più morbida perchè non allineata col piano focale
  • che la lente sia perfettamente allineata (in alcuni casi le lenti possono essere leggermente angolate rispetto al piano focale causando una perdita di definizione su uno dei lati in alto, o in basso, o a destra, o a sinistra.

In un precedente articolo avevo fatto una disanima tra diverse lenti, da lenti vintage a lenti medie, e una lente di fascia più alta senza riscontrare una differenza di nitidezza percepibile nell’uso comparato: stesso diaframma, stessa situazione, stesso sensore, stesso soggetto.

fattore 2 : il diaframma

Quando si gestisce la ripresa troppe persone dimenticano che le regole di fotografia valgono sempre, indipendentemente dalla qualità dell’attrezzatura. Molti oggi sanno che il diaframma gestisce la luce in ingresso definendo se farne entrare tanta o poca, e di conseguenza alterando anche la profondità di campo. Ho spiegato in modo più esteso in un altro articolo sull’esposizione questo discorso, ma in molti non sanno come cambiando il diaframma si possa entrare in un campo di alterazione della luce che genera la DIFFRAZIONE e come possa essere il limite della propria ripresa.

In breve cosa è la diffrazione?

Quando si chiude il diaframma di un valore maggiore di X il dettaglio di luce proiettato sul diaframma non si concentra ma si diffonde, per cui un punto chiaro su una superficie scura non è più nitido ma sfuocato. Tradotto in soldoni c’è troppa luce e chiudo il diaframma pensando di ridurla, ma man mano che chiudo il diaframma perdo nitidezza, quindi a diaframma 22 la stessa immagine sarà sfuocata rispetto a diaframma 11 come se avessimo applicato un filtro di diffusione o di blur.

Come si gestisce la diffrazione?

Dato che la diffrazione appare da un certo diaframma in poi si tratta di scoprire quale sia il diaframma limite della propria lente, in funzione del proprio sensore. Un semplice e comodo calcolatore di diffrazione lo potete trovare in questo interessante articolo sulle lenti e le loro caratteristiche.

Comunque per semplificare la vita a molti di noi, una semplice tabella per avere un riferimento, poi da lente a lente può esserci più tolleranza.
Risoluzione vs Dimensione

Risoluzione Sensore Sensore 4/3 Sensore s35 Sensore 24×36
FULL HD f/18 f/26 f/32
4k f/9.9 f/12 f/18
4.6k (UMP) f/11
5.7k (eva1) f/8.8
8k (Red Helium) f/9.4

Come si può notare non si parla di diaframmi particolarmente chiusi, se non alle basse risoluzioni, il che diventa particolarmente divertente notare come con l’aumentare della risoluzione si abbassa la possibilità di chiudere il diaframma, altrimenti si crea diffrazione, catturando una immagine progressivamente più sfuocata pur aumentando il numero di pixel catturati. Attenzione che per risoluzione si intende la risoluzione del sensore, non della cattura del filmato, perchè la dimensione dei fotodiodi o dell’elemento che cattura la luce influenza in modo diretto la nitidezza delle immagini.

Per questa ragione quando si lavora con le cineprese digitali il filtro neutro è un elemento fondamentale e indispensabile per preservare la nitidezza originale, e contrariamente a quello che credono molte persone, le dslr non sono così comode avendo un gran numero di pixel da cui ricavare un formato fhd, perchè se usiamo una fotocamera che registra in fhd ma il sensore è un 24mpx, quello è il limite da usare per scegliere il diaframma di ripresa e mantenere il massimo della nitidezza possibile, a questo proposito la mirrorless ottimale per il video è quella creata da sony nella serie A7s perchè pur usando un sensore fullframe ha una risoluzione di ripresa corrispondente all’output, ovvero 4k, e quindi meno sensibile alla diffrazione di una A7r che con 36 e 54 mpx tenderà ad avere il triplo e il quintuplo dei problemi.

fattore 3: il sensore

 

Il sensore, la sua tipologia, la sua risoluzione possono influenzare la nitidezza catturata, quindi ovviamente se il sensore è a misura della risoluzione di uscita il risultato sarà migliore. La maggior parte dei sensori sono strutturati da una matrice detta Bayer, nella quale si cattura un segnale monocromatico e poi filtrandolo si ricavano i colori, per cui abbiamo il verde che rappresenta la luminanza che possiede buona parte delle informazioni, mentre gli altri due colori sono ricavati ecatturati parzialmente, per cui si dice che comunque un sensore xK abbia una reale risoluzione di 2/3 dei K originali e poi venga fatto l’upsampling effettivo dei pixel. Il che tecnicamente è vero, ma non è un reale problema. Esistono sensori fatti come wafer dei tre sensori (uno per colore) che catturano separatamente le componenti colore RGB che spesso offrono immagini di ottima nitidezza. Esiste poi la scuola di pensiero del downsampling, ovvero catturiamo con un sensore di dimensioni maggiori, ad esempio 4.6k, 5,7k e poi da questo ricaviamo alla fine un segnale in 4k o 2k o fhd, in modo da sovracampionare le informazioni e avere una maggior precisione e dettaglio. La semplice prova di forza o applicazione muscolare degli X k non è fonte sicura di qualità o di dettaglio, inoltre con l’aumentare della risoluzione e non delle dimensioni del sensore incontriamo il problema della Diffrazione (come abbiamo visto prima), e il problema della sensibilità, perchè la stessa lente deve distribuire la stessa luce su un numero maggiore di fotorecettori, quindi ogni elemento riceve meno luce o con meno intensità.

A livello teorico maggior numero di pixel correttamente gestiti nella cattura può corrispondere ad un maggior numero di dettagli, a patto che utilizzi la risoluzione reale del sensore, cioè i pixel catturati siano esattamente la matrice del sensore.
Le eventuali elaborazione del segnale prima della registrazione (raw o sviluppata) possono inficiare la nitidezza del segnale. Esistono diversi tipi di amplificazione del segnale e durante quella fase (analogica o digitale) si può alterare la percezione di nitidezza.

fattore 4: la compressione

Una volta catturate le informazioni, queste devono essere in qualche modo registrate, e pur partendo da sensori con un’alta capacità di cattura di dettaglio, o d’informazioni (spesso 16bit lineari) poi la registrazione delle informazioni viene ridotta a 14-12bit raw o 10bit compressi con algoritmi varii che per ridurre il peso dei file andrà a alterare in modo più o meno significativo le nitidezza delle immagini. Ogni camera ha i suoi algoritmi di compressione, molti nelle cineprese si basano sul concetto della compressione wavelet, che sia raw o no, per impedire la formazione di blocchi di tipologia più “digitale” come la compressione mpeg che genera blocchi di dati a matrici quadrate, questo ottimo tipo di trasformata nel momento in cui si comprimono i dati tende man mano che si aumenta la compressione a rendere più morbido il filmato. Naturalmente quando si parla di morbidezza parliamo di finezze, non certo di avere immagini sfuocate. Molti Dop quando usano le camere Red scelgono di usare compressioni più o meno spinte in alternativa all’uso di alcuni filtri diffusori per rendere più piacevoli le immagini.

Quindi facendo una ripresa o una fotografia, non possiamo strizzare i dati in poco spazio e pretendere di avere il massimo delle informazioni, del dettaglio, della definizione. La scelta dei formati di compressione è molto importante e conoscere le differenze tra i diversi formati di compressione e le loro tecnologie applicate alle diverse camere è importante per poter gestire correttamente la qualità di partenza iniziale. Alcuni formati a compressione maggiore (h264/5) generano artefatti a blocchi, mentre le gestioni dei formati wavelet possono ridurre la nitidezza dell’immagine man mano che si aumenta la compressione, ma in modo molto leggero, tanto che molte compressioni wavelet vengono definite visually lossless

fattore 5: la lavorazione

Le lavorazioni dei file possono alterare la percezione della nitidezza se vengono create più generazioni dei file originali non utilizzando formati DI di qualità per lo scambio e l’esportazione dei materiali. L’applicazione di effetti o lavorazioni con sistemi non professionali può causare ricompressioni non volute, downscaling e downsampling colore che possono influenzare la nitidezza originale. Inoltre ci sono fasi molto delicate come il denoise che in certi casi può essere troppo forte o troppo aggressivo e come tale tende a mangiare non solo il rumore, ma anche il dettaglio fine.

fattore 6: il delivery

Un fattore poco conosciuto è la scalatura dinamica dei flussi video, soprattutto quando si guardano i film in streaming legale. Il file alla fonte ha una risoluzione e una compressione, ma durante la trasmissione se ci sono problemi di segnale, rallentamenti, problematiche varie il segnale viene istantaneamente scalato per impedire che il filmato vada a scatti o in qualche modo possa influire sulla visione generale, quindi da una scena all’altra potrebbero esserci delle variazioni consistenti della qualità e i sistemi di contrasto dinamico andrebbero ad amplificare ulteriormente i bassi dettagli. Se abbiamo un prodotto stabile e lineare come un bluray o un bluray 4k abbiamo la certezza che la qualità sarà sempre costante, mentre se usiamo una distribuzione differente delle perdite di qualità potrebbero essere causate dalla trasmissione variabile.

fattore 7: la fruizione

Un fattore che tanti sottovalutano, spesso causa del danno finale, sono i metodi di fruizione del materiale video. A partire dal dispositivo di visione, che spesso altera in modo più meno significativo l’immagine, vedi l’articolo sui televisori da telenovelas, al metodo di gestione delle informazioni. Quando vediamo una immagine non sappiano se il pannello è a misura per l’immagine che stiamo vedendo, il che può essere causa di alterazione di vario tipo, perchè dovrà essere scalata in realtime con diversi algoritmi più o meno efficienti nel mantenere il dettaglio o perderlo. Spesso abbiamo televisori 4k che mostrano materiale fhd (1/4 delle informazioni) o peggio sd (1/16 delle informazioni). Il danno però nasce dal fatto che tutti questi televisori applicano le funzioni di oversampling anche quando una immagine ha realmente la dimensione del pannello, quindi anche se apparentemente sembrano ancora più nitide, in realtà gli effetti dei vari algoritmi di sharpening tendono a creare nuovi “FINTI” dettagli che sovrascrivono e cancellano i dettagli originali.

Spesso ci sono tanti parametri attivati a nostra insaputa, o peggio abbiamo la difficoltà di disabilitarli, perchè solo in determinate combinazioni di visione sono modificabili. Ci sono prodotti di fascia alta che è possibile disabilitare le maschere di contrasto e i vari algoritmi di contrasto solo con i segnali in ingresso HDMI, non per i segnali interni o da stream internet interno… il che è può essere imbarazzante con i segnali 4k da Netflix che sono ottimi e non richiedono ulteriori process, anzi…

 


Che bel televisore per vedere le telenovelas …

La schiava Isaura, la prima telenovelas della storia.

Un po’ parafrasando una frase detta da una persona a Cannes, che la digitalizzazione delle pellicole sarebbe capace di trasformare Barry Lyndon in una telenovelas, un po’ perchè oggi tra gli addetti al settore si dice che una certa immagine è “da telenovelas” ho deciso di scrivere due righe a proposito di uno drammi moderni nel vedere un film con una televisione : la rielaborazione delle immagini.

Grazie all’avvento della teorica alta definizione casalinga, parlo di teoria perchè molti canali televisivi trasmettono sui canali hd film da master in definizione standard, oppure solo ogni tanto trasmetto in hd qualcosa, le case di tutto il mondo si sono riempite di brillanti e molto contrastati televisori per vedere telegiornali e ogni tanto anche un film.

La battuta non è causale perchè tutti i televisori moderni, anche e soprattutto se hanno una definizione superiore come il 4k sono pensati principalmente per riprodurre materiale in definizione molto scarsa, e come tale da essere rielaborata perchè altrimenti le “persone sarebbero scontente del televisore”, ho letto la settimana scorsa di una persona che si lamentava della mancanza di definizione di un televisore 4k nel vedere le partite, non su canali dedicati in hd, ma sulla semplice rai SD, e la lamentela continuava dicendo che essendo il televisore 4k tutto doveva essere migliore… e che lo avrebbe cambiato a breve col marchio x che le fa vedere meglio…

è per questo tipo di persone che rappresentano il pubblico medio che ci dobbiamo sorbire immagini orribili quando andiamo a vedere immagini di qualità.

La spiegazione è molto semplice: tarando i televisori per immagini che sono forse un quarto della definizione (trasmissione fhd) o addirittura un sedicesimo della definizione del 4k, i pixel devono essere gonfiati, e quindi come tali si vedrebbero delle immagini sfuocate o di pessima qualità, quindi vanno rielaborate per sembrare migliori. Il concetto andrebbe bene se la manipolazione fosse progressiva e dosata sulla sorgente, ovvero se forniamo al televisore immagini di risoluzioni superiori o adatte alla matrice del televisore questi algoritmi si dovrebbero disabilitare, invece lavorano comunque alterando immagine, colore, contrasto, e addirittura il movimento percepito delle immagini purtroppo non tutti gli algoritmi di rielaborazione sono modificabili o diabilitabili, addirittura ogni produttore nasconde dietro nomi diversi le diverse funzioni e alcuni impediscono la disabilitazione se non sui segnali in ingresso sulle HDMI, per cui anche ricevendo un ottimo segnale 4k da netflix, devo usare un dispositivo con ingresso esterno per evitare che venga manipolato dal televisore rovinandolo.

Ora vediamo all’atto pratico cosa succede e come le immagini vengono alterate.
Qui vediamo la situazione più comune, una immagine nativa 4k vs l’equivalente trasmessa in SD, come trasmettono la maggior parte dei canali oggi nel 2018, se non mi credete andate nelle info del canale sul vostro televisore e guardate lo stream a che definizione viene inviato.

Ricordo che una classica immagine UHD è fatta da 3840 x 2160 pixel, il FHD da 1920×1080 pixel (esattamente la metà in orizzontale e verticale, quindi un quarto), il formato HD è 1280 x 720 pixel, e infine l’SD è solo 720×576 pixel rettangolari, perchè naque in un formato più quadrato e quindi per ottenere una scalatura su matrici moderne oltre che scalato viene distorto in orizzontale.

Come si può notare la differenza tra UHD (4ktv) e il formato Standard visti al 100% è notevole, perchè abbiamo una differenza di sedici volte delle informazioni visibili, quindi ingrandendo il segnale SD si vede in modo evidente la differenza.

Dato che i dettagli non si possono inventare, in queste situazioni non si può fare nulla, tranne masticare le immagini con algoritmi varii per fingere che ci sia contrasto dove non esiste, ma con immagini con dettagli fini come questi, il problema della scarsità di qualità rimane.

Se invece andiamo a lavorare con un pò più di risoluzione, ovvero con il formato HD, già il salto non è così disturbante, e potrebbero lasciare le immagini alla loro natura.

Se potessimo vedere sempre immagini in FHD su televisori FHD o 4k, la scalatura diventa minore e quindi meno evidente, anche se presente.

L’elemento che ci inganna è il fatto che ogni segnale viene processato in più modi e la stessa immagine riceve più trattamenti, dalla cosiddetta clarity che spinge luci e ombre in due estremi, alle maschere di contrasto per rendere più definiti dettagli che non possono essere definiti perchè troppo grossolani, oppure anche se il dettaglio è presente in modo corretto, lo rende artificiale perchè applica la maschera in modo lineare su tutta l’immagine.

quindi nella realtà non vedremmo una immagine in cui ci sono poche differenze tra fhd e 4k, ma vedremmo una immagine rielaborata del FHD creando articialmente difetti e artefatti dove non servono.

Quando vediamo una telenovelas è normale una certa piattezza di luce perchè per risparmiare tempo e non rischiare differenze tra una inquadratura e l’altra si rende molto più piatta e uniforme l’illuminazione, dato che si gira con telecamere la paura di non avere immagini nitide porta ad alzare parametri di nitidezza artificiale in camera, inoltre i sensori delle camere da studio sono tali per cui non si hanno grosse sfumature e differenze tra le diverse colorimetrie del set e i diversi incarnati. In pratica esattamente l’opposto di ciò che si fa con i film per dare il look cinematografico.

Prendiamo una immagine dal bluray di MonsterSquad, un classico teenager movie anni 80 a cui serie come Stranger Things devono tutto, mettiamola su un normale televisore, il risultato nel migliore dei casi sarà come quello che vedete qui sotto, ovvero una versione telenovelizzata dell’immagine originale, con applicata la tecnica della clarity per dare maggior contrasto locale all’immagine,  una maschera di contrasto per definire tutti i dettagli dell’immagine, rovinando completamente l’atmosfera dell’immagine, appiattendo l’immagine dove il direttore di fotografia aveva deciso separando con luce e ombra i due piani. E’ molto evidente se si guarda come vengano fuori gli elementi dalle ombre dietro l’attore, distraendo e comprimendo lo spazio intorno ad esso.

Naturalmente non può mancare una forte riduzione rumore perchè di sicuro tra compressione e trasmissione si creerà rumore che assolutamente non può essere accettato, peccato che venga eliminata spesso in questo modo anche la grana e la struttura della pellicola, oltre ad eliminare il dettaglio fine.

Il dettaglio artificiale dato dalla maschera di contrasto esalta in modo eccessivo i capelli dell’aziano protagonista, ma accentua anche i dettagli fuorifuoco alla sua destra, perchè purtroppo l’algoritmo viene applicato in modo piatto e uniforme ad ogni parte dell’immagine, mentre nella realtà se abbiamo una parte nitida (a fuoco) e una morbida (fuorifuoco) la nitidezza naturale è dosata e distribuita aumentando la sensazione di profondità delle immagini.

Queste tecniche potrebbero aiutare una immagine debole, ma se applicate ad una buona immagine la rendono molto più televisiva e piatta, rovinando il lavoro di un buon direttore di fotografia, e non solo. Inoltre andrebbero dosate inquadratura per inquadratura, area per area con delle maschere, per poter dare un vero contributo all’immagine, invece su qualunque televisore applicano questi effetti in modo piatto su tutta l’immagine rovinando in più punti la resa della fotografia.

Il buon Stu di ProLost, esperto di vfx, colore e immagini ha fatto un ottimo post su come non solo rovinino le immagini a livello colore e contrasto, ma rielaborino anche il movimento e la percezione dello stesso, creando artificialmente fotogrammi superflui, che diventano necessari perchè gli originali essendo stati troppo contrastati hanno perso la loro originale sfuocatura di movimento e sono diventati scattosi… insomma un serpente che si morde la coda…

Chiudiamo il discorso con un paio di immagini pubblicitarie che ci fanno capire come il brutto vizio di manipolare le immagini non è una derivazione moderna, ma da tanti anni abbiamo il problema di poter vedere ciò che i direttori di fotografia hanno pensato in origine, solo che una volta sui tubi con l’immagine analogica le rielaborazioni erano limitate, oggi purtroppo si può massacrare ogni immagine oltre ogni limite della decenza.

comunque nel mio post sui formati dell’immagine potete trovare qualche riferimento su come una volta venissero tagliate anche le proporzioni video e selvaggiamente tagliate le inquadrature per adattarle prima al 4:3 poi a rovescio per adattare al 16:9 filmati girati con aspect ratio più vicino al 3:2 (super16mm).

Invece per chi è dubbioso, feci tempo fà un post tra pellicola e digitale, le differenze effettive in ripresa e resa dei due media, sfido tante persone di distinguere al cinema quali sequenze sono girate in pellicola, quali in digitale e poi stampate su pellicola, etc… la maggior parte delle persone non si accorge di come i film contengano una miscelazione ampia di diversi media, analogici, digitali etc.

Sono sicuro che se Kubrick fosse ancora vivo, non solo avrebbe abbracciato il digitale, ma sarebbe stato così cocciutamente testardo da far creare per lui un sistema di check dei proiettori digitali e dei televisori per far vedere correttamente le immagini dei suoi film, cosa tecnicamente fattibile da anni, ma che a quanto pare non sembra interessare a nessuno, e questa non è una mia elucubrazione, ma alle prime di molti suoi film si preoccupava che la proiezione fosse a livello qualitativo eccellente per esaltare il lavoro da lui fatto svolgere, quindi se lo fece per la pellicola, lo avrebbe fatto fare anche per il digitale.

Nota a margine: la schiava Isaura, la prima telenovelas ufficiale della storia della tv era girata in pellicola, quindi ironicamente poco telenovelas come stile visivo.


dal 2K al 16K, a quanti K ci vogliamo fermare?

16K magari in 3D a 360 e in Odorama…

i K di risoluzione oggi sono i cerchi in lega delle camere digitali, ovvero orpelli con cui si attira l’acquirente ma non sempre si equivalgono a una vera crescita di qualità, ma questo non è un articolo tecnico dedicato a questo o quell’altro formato, a questo o l’altro codec o strumento, è un articolo dedicato a quello che i venditori di fumo vi vogliono far dimenticare… Fisiologia umana

In tutti i discorsi sui K di proiezione, di tv, si dimentica il dettaglio fondamentale, ovvero se e chi è in grado di vedere quel dettaglio, perchè fisiologicamente l’occhio umano ha dei limiti… non siamo aquile, anzi l’umanità è destinata tra visione ravvicinata con cellulari e tablet, Visori 360 e simili a perdere sempre di più la capacità visiva a distanza.

Secondo il test con la tabella di Snellen, una persona con una vista a 10/10 (non la media delle persone) ha la capacità di distinguere due elementi distinti con un alto contrasto (elementi neri su fondo chiaro) a distanza X.

Questo tipo di capacità è al massimo con il bianco e nero, nel momento in cui ci sono anche dei colori questo valore si alza, ma per amor di semplicità teniamolo buono anche per il colore.

Il calcolo in funzione dell’acutezza visiva umana si può ottenere in modo semplicistico dividendo la distanza di visione dell’elemento in mm / 687,5 = il dettaglio minimo in mm che si può vedere.

a 1 metro si possono vedere al min di 1.45 mm
a 3 metri si possono vedere al min di 4,36 mm
a 5 metri si possono vedere al min di 7,27 mm
a 10 metri si possono vedere al min di 14,5 mm
a 20 metri si possono vedere al min di 29,09 mm

Partendo dal concetto di avere immagini perfettamente nitide, in ogni caso, con massima acutezza e massimo contrasto delle stesse :

Immaginiamo di metterci davanti ad uno schermo cinema da 24 metri x 10 metri in una proiezione 2.40, due tipi di proiezione, 4K e 2K:
– 4K abbiamo una risoluzione verticale di 2160 pixel, quindi 4,6mm per linea.
– 2K abbiamo una risoluzione verticale di 1080 pixel, quindi 9,2 mm per linea.

quindi per poter vedere effettivamente il dettaglio della proiezione a 4K dovremmo essere al max a 3 metri dallo schermo, mentre per il 2K a non più di 6 metri, peccato che…
per vedere uno schermo da 24 metri per intero, considerato che il sistema visivo umano non è quello dei camaleonti, c’è all’angolo visivo che percepisce il dettaglio, perchè noi vediamo a 90 gradi di fronte a noi il dettaglio, mentre man mano che ci si sposta lateralmente percepiamo solo il movimento e non il dettaglio.
Comunque per vedere interamente uno schermo da 24metri dobbiamo porci a circa a 20 metri, quindi possiamo distinguere solo dettagli distanti tra di loro 3 cm, mentre il 2K è inferiore al cm…

Immaginiamo una situazione casalinga, guardiamo a 2 metri un televisore 60 pollici, dim media 133 x 75cm. A 2 metri siamo in grado di distinguere il dettaglio di 2,9 mm di distanza, il dettaglio esprimibile in FullHD è di 750mm diviso 1080, ovvero 0,694 mm cioè ben 4 volte quello che possiamo vedere, se la tv è 4k abbiamo 750mm diviso 2160 è di 0,347mm cioè ben 8,35 volte la nostra capacità visiva.

In realtà al cinema la struttura dell’immagine è più continua, quindi ulteriormente più complesso leggere il dettaglio singolo, mentre sul televisore esiste un microspazio tra un elemento luminoso e l’altro che spesso danno la percezione di leggere più o meno dettaglio di quello che realmente siamo in grado di percepire.

Se voi vi avvicinate allo schermo cinematografico, essendo luce riflessa, il microspazio tra i pixel proiettati va a sparire, per la distanza di proiezione, per la riflessione e diffusione della luce, quindi non percepite i singoli pixel, mentre se fate una proiezione casalinga, si vedono gli spazi nella matrice e questo fornisce una peggior percezione del dettaglio finale.

Già se si osserva un monitor da computer, un 32 pollici è alto circa 40cm, con una risoluzione di FHD abbiamo una linea di dettaglio per ogni segmento da 0,37mm, monitor che noi guarderemo a circa 50 cm di distanza, dove siamo in grado di leggere circa 0,72mm di dettaglio, cioè più del doppio… da qui nasce il dilemma e la reale utilità dell’utilizzo di monitor 4k per il computer… visto che difficilmente avremo la capacità visiva di percepire la differenza tra le due risoluzioni…

Tutto questo ammettendo che abbiate 10/10, il sottoscritto non ce l’ha, ammettendo che le immagini abbiano una gamma dinamica perfetta, un dettaglio talmente elevato da poter separare ogni singolo elementi per pixel senza antialiasing intermedio, che sia compresso e riprodotto al meglio per non perdere questa acutezza, che non ci siano effetti di postproduzione che alterano la percezione di tali elementi, che il sistema di riproduzione sia in grado di riprodurre per ogni singolo pixel un reale punto di luce nello spazio, ma soprattutto che il sistema di cattura abbia realmente catturato quelle informazioni e non abbia usato nessun sistema di pixel shifting (vedi più avanti) nè interpolazione da sensori a risoluzione più bassa.

Posso immaginare che qualcuno possa dire, ma io se vedo un SD o un FullHD sullo stesso tv vedo la differenza, ovvio, anche perchè la sorgente SD di solito arriva da una fonte di qualità talmente bassa che non offre realmente la risoluzione reale, cioè è più sfuocata e quindi i pixel non offrono il contrasto che potrebbero realmente dare. Ad esempio un DVD se visto in 4/3 ha pixel che vengono leggermente scalati in larghezza, ma se visto in 16:9 il numero dei pixel è sempre lo stesso, ma viene scalato di quasi il 30% in orizzontale facendo perdere molto dettaglio, se guardiamo una trasmissione televisiva la registrazione originale anche se digitale non conservava realmente tutte le informazioni per pixel, se poi è passata per una trasmissione via etere la quantità di dettaglio perso è semi infinita.
Inoltre che le varie rielaborazioni che le tv offrono sulle immagini in basa definizione in realtà si amplificano questi divari, contrastando gli impasti dei pixel.

Comunque non sono l’unico ad aver fatto i conti, anzi… soprattutto una azienda che produce ottiche da cinema e ha tutto l’interesse a far cambiare le ottiche per vendere le nuove… oppure no..

Spesso si cita tra i film full Digital come pionieri il secondo impianto di StarWars, che io trovo molto digitale e televisivo come risultato, come tipologia d’immagine etc, mentre preferisco citare un film uscito nello stesso anno, realizzato da Robert Rodriguez, su suggerimento dello stesso Lucas con la stessa camera “One upon a time in Mexico” che nessuno ha giudicato digitale o poco filmic, pur usando la stessa camera.
StarWar Clone Wars imdb link tech

Once upon a time in Mexico imdb link tech.

 

 

Quindi girare in 4K o 8k è inutile?

Dato che il 4k sembra diventare lo standard anche per la visione su cellulare, partiamo dal differenziare un paio di concetti: ripresa vs delivery.

Ripresa al massimo della definizione e qualità è un ottimo principio perchè quando si deve fare il downsampling (la scalatura verso il basso) la qualità globale, il dettaglio saranno sempre migliori che girare in risoluzioni inferiori. Se sono necessarie maschere, effetti di post, reframing etc una maggior risoluzione lascia spazio a lavorazioni dell’immagine senza perdite di qualità percepita.

Delivery al massimo della definizione… anche no…

  • se il sistema di trasmissione non permette un flusso dati sufficiente, meglio una definizione inferiore con più dettaglio che una maggior risoluzione più compressa che in ogni sistema di compressione creerà più artefatti e macroblocchi, non a caso molte tv digitali la trasmissione HD è preferita anche al FHD, per ottimizzare il flusso dati, solo NetFlix oggi ha trasmissioni 4K da riprese 4k, con controllo del flusso di lavoro.
  • se il sistema di visione non è adeguato per la risoluzione maggiore lo scalerà al volo, spesso con maschere di contrasto etc danneggiando il filmato, peggiorando notevolmente il dettaglio e la gamma dinamica generale
  • se la fruizione non è adatta a quella risoluzione, alla meglio sarà uno spreco di risorse di trasmissione, lettura, gestione, alla peggio non si vedrà la differenza

Detto questo non voglio incentivare il ritorno al vecchio formato SD, ma prima di comprare il nuovo monitor o tv 4k invece che un fullhd valutate bene le distanze da cui vedrete il tutto, valutate se effettivamente farà la differenza o ci sarà qualche altro elemento più interessante da valutare sulla qualità della tv… entro certi tempi perchè… il mercato velocemente sceglierà per voi eliminando il televisori Fhd.


Pagina 1 di 2

Powered by WordPress & Theme by Anders Norén

Translate »
error: Content is protected !!