Carlo Macchiavello

Tutto è possibile

Categoria: I miti da sfatare (Page 1 of 10)

10 motivi per cui la Pocket 4k è migliore della 6k

 

Argomento caldo del momento è la Blackmagic Design Pocket6k, per la quale sembra che sia partito un innamoramento generale dei filmaker e una necessità indispensabile di vendere cosa già si ha per passare alla pocket6k. E’ un fenomeno comune che il prodotto nuovo sia miglire di quello che abbiamo perchè il periodo detto dagli psicologi “luna di miele” è terminato e vediamo lo strumento che possediamo come inutile o sorpassato. Di base avrei fatto una disanima più equilibrata tra le due camere, ma visto che vanno di più i xxx versus yyy, divido il tutto in due articoli 😀

La pocket6k si differenzia per poche cose dalla versione 4k, per la gestione e supporto delle nuove risoluzioni e di un sensore di formato s35, come le ammiraglie UMP, ma per il resto non ci sono differenze di gamma dinamica o performance realmente vantaggiose sulla Pocket4k.

Ora facciamo un ragionamento pratico su questa “vecchia camera” e vediamo 10 motivi per cui vale la pena acquistarla invece della pocket6k.

1) Fattore economico

La pocket4k è disponibile per circa 1500 euro al pubblico, mentre la pocket6k costa 2500 euro al pubblico, per cui al prezzo di una camera quasi si prendono due pocket4k.

2) Storage

Utilizzando una maggior risoluzione, anche con il braw o formati prores più leggeri le richieste di storage aumentano, la velocità delle card e dei dischi per registrare queste informazioni dovranno essere maggiori, quindi si dovrà fare un ulteriore investimento sia di stoccaggio che di registrazione, cosa che non tutti sono disposti a fare.

3) Risoluzione di ripresa

La pocket 4k ha il 4k (ovviamente) DCI, UHD e il FHD con un sensore 16:9 che permette di registrare in raw queste risoluzioni, 4kDCI è il sensore pieno, UHD e FHD vengono registrati in crop del sensore come su Arri, Red, Sony e tutte le altre camere; in Prores tutte queste risoluzione senza “windowed sensor” ovvero senza un crop ulteriore.

La pocket 6k avendo un sensore di maggiori dimensioni sia in taglia che in risoluzione, in raw NON prevede il 4k o UHD neanche “windowed”, ma utilizza un formato 5.7k o 3.7K anamorfico windowed per generare un formato vicino al 4k o UHD. Quindi per chi vuole lavorare in 4k o UHD nativi deve tenere conto che con la pocket6k deve scalare o in alto o in basso i dati, che saranno ricchissimi come informazioni, ma è uno stress in più a cui sottoporranno il proprio NLE.

4) Dobbiamo avere lenti migliori

Ci sono tre motivi per cui la pocket4k è in vantaggio sulle lenti sulla 6k, che è lo stesso motivo per cui il 4/3 è in vantaggio sul aps-c e sul ff.
Quando si utilizza una lente, pensata per un formato più ampio, il massimo della qualità visiva è nella parte centrale, mentre man mano che si va all’esterno si ha una leggerissima perdita, in funzione della qualità e del livello della lente, per cui usando una lente FF originale o vintage, un formato 4/3 croppando di più prende il meglio della lente, un s35 con un minor crop prende di più i lati e gli eventuali difetti, un sensore FF prevede di avere una lente perfetta, altrimenti non ha senso aver investito in un sensore FF.

Il secondo motivo è che salendo con la risoluzione anche le lenti collegate dovranno essere di buon livello, perchè altrimenti non avrebbe senso usare un sensore 6k se poi si mettono dei fondi di bottiglia davanti al sensore.
Avendo un attacco Canon EF si ha accesso ad un buon numero di lenti Canon, Sigma, Zeiss che offriranno ottime performance con tale camera.

Il terzo vantaggio della Pocket4k è che il mount m4/3 ha un tiraggio corto e permette l’adattamento di quasi ogni tipo di lente meccanica, vintage, permettendo di accedere a migliaia di splendidi vetri degli ultimi 100 anni anche di qualità ottima, semplicemente dismessi perchè non autofocus.

5) batterie più capienti

Una camera con sensore più grande e con maggiore risoluzione richiede anche una maggior potenza di lavoro, quindi si deve ragionare o con il battery pack o con batterie esterne capienti per poter avere una buona autonomia. Dalle prime indicazioni pare che se la Pocket4k assorbe 22w/h la pocket 6k dovrebbe assorbire circa 26w/h quindi le durate dovrebbero essere assimilabili, ma… le lenti EF hanno stabilizzatori più avidi di corrente rispetto a quelle m4/3 e quindi l’utilizzo di questo differente tipo di lenti potrebbe drenare rapidamente le nostre batterie.

6) Sensore più grande, maggiore risoluzione, meno luce + rumore

La ricerca del sensore più grande, come se fosse la magia per avere più qualità, non sempre offre lo stesso risultato, perchè su una superficie poco più grande, ricordiamo che tra s35 e sensore 4/3 della pocket4k non ci sono grandi differenze di scala, ma dato che la stessa superficie la dividiamo per una risoluzione (numero di pixel) notevolmente maggiore (da 10 a 20 megapixel) la luce che raggiunge ogni pixel è più o meno dimezzata e quindi il sensore riceve meno luce rispetto alla Pocket4k, il che significa circuiti di guadagno più potenti e potenzialmente più noise.

7) Maggiore risoluzione, maggiore dettaglio, più possibili problemi

a parte la smania di risoluzione, che spesso è superiore alla capacità visiva umana, ma quello è un altro discorso già affrontato, una maggior capacità risolutiva del sensore 6k senza un filtro per le alte frequenze, offre il rischio di maggiori problemi di moires e difetti visivi legati al campionamento delle alte frequenze su tanti elementi, mentre il sensore 4k essendo (in confronto) meno risoluto ha meno rischi di moires.

8) La camera è nuova, facciamo i beta tester

Come succede con ogni camera di ogni brand, la prima ondata di camere è una beta pagata, ovvero si prova sul grande pubblico il funzionamento della camera, e se ci sono problemi o difetti saranno corretti in corsa durante la produzione, mentre la pocket4k che viene spedita da un anno ha ormai una linea di produzione verificata e coordinata.

9) Sulla Pocket4k si possono avere gli speedbooster, sulla 6k ni

Un miracolo ingegneristico e tecnologico sono gli speedbooster della Metabone, azienda americana che crea degli adattatori di lenti che al loro interno contengono una lente che concentra la luce e offre due vantaggi : guadagno di uno stop di diaframma e riduzione del crop tra FF e formati aps-c e 4/3,m4/3.

Gli speedbooster sono poi stati imitati da altri, ma la qualità ottica per cui vale la pena avere uno speedbooster a oggi non è ancora stata eguagliata.

Gli speedbooster posso esistere solo nel caso di tiraggi lente sensore che lascino posto a tale lente, cosa che tecnicamente il mount EF non fa.

Pare che l’azienda Lucadapter, che produce una variante da inserire all’interno della UMP, stia pensando di produrre la stessa cosa per la pocket6k, ma per ora è ancora in fase di kickstarting, mentre per la pocket4k esistono sia i generici che quello dedicato da tempo.

10) Computer più potenti

Per gestire sia i prores che i braw 6k sarà necessario alzare l’asticella della potenza dei computer, la velocità dei raid per leggere i dati e quindi non basta la semplice camera, ma gli investimenti si allargano in tutta l’attrezzatura.

Naturalmente la mia lista è relativa ad un discorso puramente generale, ognuno poi ha punti di vista diversi, personalmente la maggior parte di questi punti non mi tange, abituato a girare in dng non compressi o altri formati raw molto onerosi, ho usato la prima Alexa con il firmware 0.85 che registrava fullHd prores, senza audio, e ho avuto tante esperienze varie per cui … penso che queste due macchine siamo miracoli regalati alla massa.

Vi attendo al prossimo articolo “Perchè la pocket6k è migliore della Pocket4k”, così rovesciamo le situazioni…

 

Blackmagic Raw 1.3 God or Evil?

Nel 2001 naque il primo codec interpiattaforma e slegato dall’hardware, Cineform, nel 2005 fu potenziato per offrire la possibilità di importare fotografie raw di diversi brand e convertirle in un filmato raw compresso visually lossless con metadata attivi e modificabili realtime, successivamente l’encoder fu in grado di convertire tutti gli altri formati raw nati SUCCESSIVAMENTE in Cineformraw con diversi flavour di compressione e qualità supportando fino al 16k stereoscopico.

Oggi nel 2019 quasi ogni Brand ha la sua codifica Raw, a partire Arriraw, Redcode, SonyRaw, PanasonicRaw, l’anno scorso l’introduzione di ProresRaw che permette il recording in formato ProresRaw direttamente dalle camere che escono in raw da SDI sui recorder Atomos e pochi altri, fino al recente Braw di blackmagic.

A Ibc 2018 Blackmagic design lancia la palla nel campo del raw, introducendo il loro codec proprietario braw (blackmagic raw) nel mondo del broadcast e del cinema con una certa forza dirompente, e soprattutto disponibile subito, dallo stesso giorno con il firmware in beta 6.0 per la UrsaMiniPro, il nuovo aggiornamento di Davinci Resolve 15.1 per supportarlo e la promessa che a breve sarà disponibile anche per la nuova camera, pocket 4k e così è stato con il firmware 6.2, ma nel contempo toglieva la registrazione Dng.

La differenza tra il Dng e il Braw è evidente e chiara, il dng è uno standard fotografico, peraltro abbandonato dai suoi stessi creatori nel 2016, piegato alle necessità dei video, mentre il Braw è un moderno codec raw pensato per le immagini, dove convivono le diverse necessità di lavoro di un codec video di fascia alta e le richieste di fascia bassa.

La presentazione del Braw è stata abbastanza curiosa, dove GrantPetty ha scherzato sul fatto che con un codec così leggero non servono più le schede video esterne di decodifica, ironeggiando sul fatto che le producono loro per Apple.

Come sempre l’innovazione porta pro e contro, fautori e osteggiatori, fino al parossismo, ma essendo un pragmatico, preferisco fare una analisi meno tecnica (quella la lascio alla fase finale) e più pratica.

 

CONTRO

  • leggermente meno nitido del CDNG (meno aliasing sui dettagli)
  • a forti compressioni ha artefatti sui dettagli fini
  • meno compatibile nelle applicazioni rispetto al CDNG (ma licenza free per la sua implementazione).

PRO

  • il rapporto peso qualità è incredibile
  • la minor incidenza di falsi dettagli e aliasing permette una maggior fluidità di ripresa-riproduzione del movimento
  • il nuovo sistema di demosaicizzazione ottimizza e migliora la cattura della struttura dell’immagine riducendo artefatti come FPN
  • la parziale demosaicizzazione applicata in camera permette una maggior leggerezza di lettura sui dispositivi
  • richiesta di minor velocità di scrittura permette uso di storage meno costoso e poter registrare più a lungo con minor consumi
  • i vantaggi del raw senza il peso del raw in tutti i sensi
  • registrazione di segnale 12 bit log con metadata attivi
  • possibilità di incorporare LUT e altri elementi di preview non distruttiva
  • possibilità di trimming non distruttivo da Resolve per tagliare i file raw ed esportarli in raw senza ricompressione (non tutti i raw, non tutti gli NLE lo permettono).
  • possibilità di export dei singoli frame raw senza ricompressione per test, Dit working etc con passaggio di pochi dati.

A qualche mese dalla sua presentazione esistono già diverse applicazioni professionali a supportarlo come Resolve immediatamente, Nuke, Scratch, Premiere e Mediaencoder tramite plugin esterno, la lista sta crescendo rapidamente grazie al fatto che chiunque può implementare la gestione del braw nel proprio software gratuitamente, al contrario di ogni altro codec raw nato sulle telecamere che richiede un pagamento di licenze anche per la semplice lettura perchè si devono usare gli sdk proprietari.

Per coloro che vogliono testare il codec, possono scaricare dei sample dalla pagina Blackmagic Raw .

Se non volete scaricare e usare Davinci Resolve free per vederli potete usare un player dedicato

Player Braw 1.4 Blackmagic design per MacOsX

Player Braw 1.4 per Windows link in descrizione

I falsi miti sul Raw in generale e non solo su questo Raw
Se è compresso non è raw!

l’affermazione denota ignoranza, in tanti punti, a partire dal fatto che nessuna camera registra il 16bit lineare che cattura i sensori, ma lo codificano e comprimono in vario modo dentro raw 14bit logaritmici (in fotografia) o raw 12bit logaritmici (nel cinema), sia per questioni pratiche di flusso dati, sia per gestione fisica della massa di dati che non compressi sarebbero ingestibili.

Dato che qualcuno potrebbe dubitare delle mie parole, delle parole di Blackmagic visto loro lo regalano (ricordiamo che tranne pochi esempi high end, tutti gli altri vi fanno pagare saltamente la registrazione non fortemente compressa, figuriamoci il raw) meglio mettere uno screengrab dal sito Red, i primi a dotare una camera di codec raw proprietario e spesso usate per shooting miliardari dove non ci sono limiti di mezzi, eppure per L’uomo ragno ritenevano buona una compressione 5:1 visually lossless, e la non compressa che tutti auspicano per i loro lavori da caricare sui social non era adatta…

la cosa divertente è che quello che gli amatori ritengono un problema, ovvero la morbidezza delle immagini, è qualcosa che molti dop di fascia alta auspicano conoscendo bene i problemi degli eccessi di nitidezza, spesso vengono scelte compressioni maggiori per mantenere più morbide le immagini.

Ovviamente c’è compressione e compressione, la maggior parte delle persone per compressione pensa sempre a quella distruttiva di streaming e company non a compressione più intelligente.

Se è parzialmente demosaicizzato non è raw!

il braw, se la gente avesse la competenza e l’intelligenza per leggere l’sdk di Blackmagic vedrebbe cosa accade e perchè si parla di demosaicizzazione parziale, ma se lo potesse fare, non scriverebbe certe sciocchezze.

Ogni raw ha il suo workflow di lavoro, processi fatti in camera e processi fatti nel software, con vantaggi e svantaggi.
Un codec è raw se permette :

  Braw
la gestione delle matrici separate si
il controllo reale di iso e altri paramentri in post si
il controllo del bilanciamento colore in post si
registrazione dei 12 bit log per matrice si

quindi se il codec offre tutte queste opzioni è un codec raw.

Si è bello ma non lo leggo dal software XYZ!

altra affermazione opinabile visto che anche gli altri codec non sono ben letti (con eccezione di Red) in modo ottimale dai vari NLE, anzi spesso richiedono la creazione di proxy con i software dedicati. Normalmente ai montatori non si danno gli originali, ma i giornalieri con Lut applicate, se si parla di raw o log, quindi il problema non sussiste.

Oggi Bmd vende due camere con il Braw, la UMP e la Pocket4k, entrambe sono vendute con licenza completa di DavinciResolve, ovvero il miglior software per lo sviluppo Raw e in particolare Braw, oltre che buon editor, postproduction etc etc…
Se si vuole lavorare in un altro software Resolve prevede dal pannello media il sistema di ingest e conversione in altri formati, si può già fare una precolor oppure gestire direttamente la color e mandare il filmato sviluppato all’applicazione NLE.

 

La piccola rivoluzione relativa all’introduzione del Braw ha creato tanti osteggiatori, per chi ha dubbi e ha bisogno di più test scientifici e ben pensati, potete visitare il sito di Frank Glencairn sul post relativo alla qualità del Braw.

Dove mostra dei test pratici nei quali la differenza reale tra i diversi flavour di compressione è relativa, ma la qualità generale resta molto alta contro una serie di richieste generali veramente irrisorie.
Man mano che passa il tempo aggiungo qualche frame estratto a caso dagli shooting, senza denoise, per far capire quanto la qualità anche compressa sia eccezionale sia come dettaglio che pulizia dell’immagine.

Zuppa di codec 3 controrumors pro Apple e pro Microsoft

In passato con precendenti articoli dedicati ai codec dei sistemi operativi, ho parlato di conoscenze di base con Zuppa 1, di come non serva installare codec esterni per montare in Zuppa 2, ho parlato dei Digital Intermediate in Flussi Digitali, e di codec Audio in Ac3 siamo a piedi, oggi siamo qui a chiarire un fatto che recentemente ha creato un certo numero di rumors, di chiacchiere da bar inutili, e soprattutto preoccupazioni ingiustificate, ovvero l’annuncio di Apple che dai sistemi operativi dopo Mojave, 10.14, non saranno più supportati i codec Cineform, DnxHr, e altri considerati obsoleti.

Facciamo un paio di semplici domande: oggi sono supportati? NO!!!
come si può leggere sui formati supportati da FinalCutProX sulla pagina di Apple.

Ma ovviamente saranno supportati dal sistema operativo? NO!!!
Nè Apple Osx, nè Windows da Xp all’ultimo Win10 supportano tali codec.

Quindi ci sono pagliacci in giro che parlano a vanvera spaventando e mettendo rumors inutili e inutilmente provocatori? Si purtroppo questa è la verità….

la premessa

Da infiniti anni, i sistemi operativi avevano il supporto per un numero limitato di file e di codec multimediali implementando al loro interno codec necessari per vedere tali file dalle utility di sistema, nel tempo i diversi codec si sono ridotti notevolmente a pochi codec, e molti non sanno, che spesso erano stati installati da applicazioni di terze parti, ad esempio Windows non ha mai pagato le royalties per la lettura dei film in Dvd, codec mpg2, quindi senza l’installazione di un player dvd il lettore multimediale di windows non era in grado di leggere nessun dvd, dava errore dicendo Codec non supportato, ma nessuno ci faceva caso perchè leggeva i dvd da… un player dvd, quindi installando il programma si installavano i codec nel sistema.

Sia sotto Windows che sotto Mac la maggior parte dei codec video è sempre stata aggiunta come terza parte, e spesso anche se supportati direttamente esistevano codec di miglior qualità (la tedesca MainConcept ha fatto business su questo prima di vendere i suoi codec a Adobe).

Chiunque abbia lavorato nel video negli ultimi 20 anni conosce l’innumerevole quantità di codec, pacchetti, varianti di codec ha dovuto installare per supportare una o l’altra camera durante l’editing video.

Oggi girando prettamente in h264 e varianti, tutto sembra per magia supportato e quindi tutto compatibile (che poi non è vero perchè h264 a seconda del decoder software hardware può essere letto con piccoli errori e differenze qualitative).

La realtà, oggi 1 dicembre 2018

Apple con il sistema operativo successivo a Mojave abbandonerà completamente il framework Quicktime 32bit, e completerà il passaggio iniziato anni fà a AvFoundation framework 64bit, con il risultato che tutti i software collegati al vecchio framework smetteranno di funzionare.

Cineform, dnxHD/Hr e molti altri codec erano implementati nel sistema installando esternamente delle risorse che si appoggiavano al vecchio QuicktimeFramework.

Ora noi abbiamo un problema? No, la situazione è come era prima, perchè si implementavano i codec come terze parti nel sistema per vedere da finder o da altri programmini i filmati, ma i software importanti implementano internamente i codec senza dover dipendere dal sistema, come ho spiegato negli articoli zuppa di codec precedenti.

Un buon flusso di lavoro prevede che tutto il lavoro sia fatto in modo ordinato ed efficiente tramite i software di ingest ed editing, per fare una rapida cernita del materiale, introdurre tramite metadata le informazioni di lavoro, e organizzare il materiale copiandolo, transcodificandolo e gestendolo senza dover passare per il sistema operativo.

Per chi ancora vuol passare per il sistema operativo, basterà che usi una qualunque applicazione come VLC che include già tutti i codec per leggere i file, anche se si lavora in ambito montaggio e post ha più senso usare software di lavoro per vedere il materiale e giudicarlo, che usare player di sistema o altri elementi che possono alterare, mostrare il materiale nel modo non corretto.

La realtà, oggi 11 dicembre 2018

Apple ha trovato un accordo con Adobe riguardo il prores, e nelle nuove release di Adobe Premiere, After Effects, MediaEncoder etc potranno scrivere file in prores anche sotto Windows, a dimostrazione che si vogliono estendere le possibilità e non chiudere come tanti affermano.

Supporti questi sconosciuti, quanta velocità mi serve?

Troppe volte sento parlare e leggo di problemi di registrazione dei file, sia fotografici che video, associati a bestialità tecniche incredibili, sia perchè c’è tanta disinformazione, sia perchè spesso sono argomenti affrontati con molta superficialità, che causa problemi lavorativamente.

La cosa inquietante è che spesso anche le aziende non sono preparati per rispondere a domande banali, conservo ancora una email del supporto tecnico di una nota Azienda riguardo alla richiesta di un elenco di SD certificate per la registrazione del flusso dati 400mbits della loro camera, l’avranno testata in qualche modo visto che facevano uscire i video dimostrativi, ma nessuno mi sapeva dare elenco di card certificate per ottenere tale risultati, e di sicuro non spendo centinaia di euro in schede inutili per fare i test al posto loro, come suggeritomi dall’assistenza.

Perchè mi serve avere un supporto veloce e cosa accade quando uso un supporto più lento di quello necessario?

Quando stiamo scattando una fotografia, stiamo girando un video, stiamo creando dati che passano attraverso 5 diversi possibili colli di bottiglia:

  • Dimensione buffer interno della camera
  • Controller di registrazione della camera (supporto o no di schede veloci UHS-II etc)
  • Dimensione buffer esterno della scheda (prima della scrittura sulle celle il controller spesso ha un buffer di passaggio per liberare quello della camera)
  • Controller di registrazione della scheda (la gestione delle celle viene fatto da un controller che registra direttamente i dati o spesso li comprime per accelerare il trasferimento).
  • Qualità celle che mantengano la stessa velocità di scrittura per tutte le celle, molti supporti dopo aver riempito in modo casuale la metà delle celle rallentano perchè hanno mappato male i dati e devo “trovare gli spazi liberi”.

Dato che con la scelta della scheda stiamo influenzando buona parte di questi elementi di gestione della velocità di scrittura dei dati, è importante fare la scelta giusta, perchè se il supporto scelto è quello ottimale avremo una serie di vantaggi:

  • registrazione alla massima qualità dei video
  • registrazione al massimo bitrate dei video (non sempre coicide col primo punto, ma ci sono vantaggi e differenze in questo)
  • registrazione di raffiche di fotogrammi più lunghe
  • reattività della macchina a scattare nuovamente dopo aver scattato i primi fotogrammi

Al contrario se il dispositivo non è adeguato possiamo incontrare i seguenti problemi:

  • limiti di durata dei video alla massima qualità/bitrate (dipende dal buffer interno, normalmente si parla di pochi secondi se la scheda non è adeguata), si prevede perchè sempre stesso intervallo.
  • se la scheda è discretamente veloce, possiamo avere interruzioni della ripresa video dopo un tempo X (buffer che si riempe ma non abbiamo feedback può essere anche dopo minuti di registrazione) non prevedibile.
  • tempi di attesa più o meno lunghi dopo lo scatto per attendere che sia scaricato il buffer
  • lo scarico del buffer della raffica richiede secondi e quindi non si può scattare nel frattempo
  • raffiche brevi perchè il buffer della camera si riempe subito
come scelgo la card giusta?

Il primo limite nella scelta delle card sta nel fatto che i produttori spesso offrono dati confusi e tendenziosi per ingannare l’acquirente occasionale, fornendo sigle e indicazioni poco chiare o spesso indicanti solo di parte dei dati:

  • SD Secure Digital fino ad un massimo di 2gb
  • SDHC Secure Digital High Capacity dai 4 ai 32 gb
  • SDXC Secure Digital eXtended Capacity da 64gb a 2 tb
  • Classe 2 scrittura a 2 mb/s
  • Classe 4 scrittura a 4 mb/s
  • Classe 6 scrittura a 6 mb/s
  • Classe 10 scrittura a 10 mb/s
  • SD UHS Speed Class-I U1 scrittura garantita a 10 mb/s per tutta la capacità della scheda
  • SD UHS Speed Class-I U3 scrittura garantita a 30 mb/s per tutta la capacità della scheda
  • SD UHS Speed Class-II U1 e U3 scrittura garantita da 150 mb/s a 312 per tutta la capacità della scheda
  • SD Video Speed Class nuova categoria per la registrazione video con garanzia di prestazione V6 (6 mb/s), V10(10mb/s),V30 (30 mb/s), V60(60mb/s),V90 (90 mb/s)

Spesso quando si vedono le velocità scritte sulle schede si parla delle velocità di lettura, non di scrittura, che non ci interessano per la scrittura dei file in ripresa.

Entrambe sono SDXC Classe 10, U3

la prima legge a 95 mb/s ma V30, quindi scrive a 30 mb/s

la seconda legge a 300 mb/s ma scrive fino a 260mb/s.

Quindi è importante saper leggere le sigle, verificare le vere velocità di scrittura delle schede SD per evitare sorprese durante il lavoro.

come scelgo l’ssd giusto?

Oggi diverse camere usano gli ssd per la registrazione dei dati, o tramite adattatori CF2 to Esata trasferiscono i file su SSD. Le stesse regole delle schede SD valgono anche per le CF e gli SSD, anzi ci sono anche più pericoli nascosti, perchè spesso le velocità dichiarate sono farlocche, ovvero ottenute solo tramite trucchi hardware, ma solo nel momento in cui lavorano su un computer, mentre nel momento in cui sono connesse con un sistema di registrazione diretto questi elementi non funzionano.

Troppi utenti trascurano il fatto che dentro gli ssd ci sono dei controller, dei buffer, e spesso trucchi per raggiungere velocità di picco che non saranno mai mantenute durante la registrazione di file continua.

I produttori di ssd spesso cambiano le memorie interne degli ssd senza cambiare le sigle, per cui dischi ssd testati l’anno scorso contengono memorie diverse, meno efficienti, meno rapide di quelle testate in passato.

Inoltre a seconda del controller, del tipo di disco, delle memorie la velocità può essere costante durante il riempimento del disco, oppure mentre si riempe il disco, dopo la metà può essere anche meno del 30% del valore dichiarato.

Ogni disco è una storia a sè, le diverse taglie di un disco offrono prestazioni diverse perchè cambiano i controller, il tipo di memorie, e spesso anche il modo con cui vengono riempiti i dischi, per cui ci possono essere ssd da 256 gb poco efficienti, ma lo stesso disco in taglio da 1 tera è perfettamente utilizzabile e compatibile con le più alte velocità di scrittura.

Ovviamente i produttori di ssd testano gli ssd per usarli nel computer e quindi non è illegale dichiarare determinate performance, perchè su computer possono raggiungere 480 mb/s quando in realtà collegati ad una normale interfaccia sata rendono al massimo 130/140 mb/s costanti, perchè il resto delle performance sono picchi ottenuti con la compressione dati e col trasferimento da un controller all’altro.

Per queste ragioni le liste di supporti certificati sono molto brevi e limitate a determinati marchi, dischi, e taglie particolari di suddetti dischi.

MAI SUPPORRE O FIDARSI DELLE INDICAZIONI TECNICHE

acquistare sempre i supporti certificati dalla casa madre della camera, e/o verificare il supporto prima di un lavoro con riprese multiple, sia con ripresa continua fino a riempire il disco, riprese alternate, accensioni e spegnimenti camera etc etc.

Ho avuto esperienze di dischi che per velocità dichiarate avrebbero dovuto supportare registrazioni raw continue, mentre in realtà faticavano con registrazioni in formati DI di alta qualità perchè erano solo velocità di picco e nulla di costante.

La verità è là fuori

Ve li ricordate? La coppia di scettica e credente che hanno cambiato il modo di fare televisione e serie tv negli anni 90, X-File.

Mi sono ispirato a loro per questo post, perchè sono stufo della disinformazione che viene fatta dietro l’hardware quando si deve lavorare, da una parte la totale confusione che c’è su internet a proposito della potenza e delle soluzioni hardware per chi deve fare editing video, postproduzione, 3D, dall’altra gli assemblatori di computer che sono totalmente ignoranti, prendendo a paragone il mercato del gaming come fonte assoluta dei benchmark, quando in realtà chi lavora non può affidarsi a quelle informazioni.

Facciamo una premessa : i giochi e i software di editing/postproduzione/3d si basano su principi di gestione della memoria, dei core, delle GPU completamente diversi, per questa ragione una configurazione che per i giochi mostra un incremento notevole di potenza, magari per l’editing il discorso è ininfluente.
Tutto il mio articolo è fondato sulla ricerca delle performance lavorative, quindi se qualcuno vi fornisce informazioni discordanti chiedete quali sono le sue fonti e le ragioni operativo pratiche su cui si basano le sue conoscenze, se non utilizza almeno due o tre pacchetti di postproduzione e 3d non è attendibile.

Parliamo dei processori

Tanti anni fà il signor Gordon Moore, coofondatore della Intel, teorizzò con la prima legge di Moore che i processori avrebbero raddoppiato il numero dei loro transistor e di conseguenza la loro potenza ogni 2 anni.
Quello che non considerò furono tre fattori :

  1. c’è un limite alla dimensione del processore, un limite alla miniaturizzazione delle piste altrimenti ad aumento di potenza si rischia la elettromigrazione e quindi corto delle piste.
  2. c’è un notevole aumento di temperatura all’aumento della potenza del processore e va dissipata in modo efficiente per non avere oltre che consumi notevoli, problemi di stabilità (vedi i moderni cellulari octacore che sembra di avere uno scaldino sul viso).
  3. I programmatori sono diventati sistematicamente più pigri e inefficienti, se negli anni 90 i programmatori compilavano il software ottimizzato per il singolo processore e all’installazione si sceglieva la versione più adatta, oggi molti programmi non sono neanche ottimizzati per il multicore, multiprocessing sprecando fino al 80% delle risorse

Ad ognuno di questi fattori c’è rimedio, nel tempo sono cambiate le tecnologie e se si vuole…

  1. la stratificazione permette la creazione di processori multicore (a oggi 72), con ridotti rischi di elettromigrazione, ma alcuni produttori per evitare il rischio mettono dei “lucchetti” alle potenzialità del processore, ovvero la velocità non è costante ma oscillante a seconda della richiesta di sistema, il chè è bene per ottimizzare risorse, scaldare meno, consumare meno, ma nel momento in cui lavoro e lascio a renderizzare un computer per 60 ore (il 3d o la postproduzione anche giorni di rendering), quel processore rischia di toccare picchi di durata non prevista e passare dal semplice spegnimento al danno diretto del processore.
  2. oggi sia i dissipatori attivi di buona qualità che i dissipatori a liquido sono discretamente economici da permettere a chi lavora di dissipare tutto il calore che serve, peccato che il principio è come quello delle vecchie lampadine a incandescenza, si sprecava una quantità inusitata di energia in calore invece che in luce/calcolo
  3. qualche programmatore che ottimizza i software esiste ancora, mi vengono in mente per il 3d Zbrush, 3D coat, Clarisse, software che sembrano magici per quello che fanno, ma in realtà si tratta solo di buona programmazione.
parliamo delle schede video

Nel mercato di oggi si sta spingendo molto sulla scheda video e sull’utilizzo delle GPU per il calcolo, un discorso molto moderno e approccio innovativo, che iniziò circa 40anni fà con Steve Wozniac in Apple nel 1977 e con Commodore con Amiga nel 1985, in quel caso i programmatori lavoravano a basso livello, gestivano direttamente i chip delle schede video spremendo ogni bit disponibile, oggi i programmatori si appoggiano a librerie di sistema che utilizzano poi l’hardware, parliamo di Metal2 nel caso di Apple per chip (Nvidia, Intel, AMD), Cuda per Nvidia, OpenCL per AMD, Nvidia, Intel (standard open a più tipi di chip, ma purtroppo meno performante).

Questo vuol dire che a seconda delle scelte dei programmatori possono sfruttare meglio o peggio le risorse hardware del sistema, questo è il motivo per cui il programma di editing X arranca con il fullHD sulla stessa macchina dove il programma di editing Y gira fluido in 4k.

La scheda video oggi viene sfruttata per accelerare come minimo :

  • decodifica dei file h264, h265 (la maggioranza dei file video generati da smartphone, macchine fotografiche e telecamere di fascia medio – bassa, quindi se già la lettura del file e la sua decodifica impegna la scheda, questa ha meno risorse per i task successivi
  • accelerazione effetti video / audio in tempo reale
  • gestione di rappresentazione o calcolo 3D (esiste una intera categoria di motori di rendering di alto livello, alcuni nati dai giochi come U-Render o Octane Render che usano solo esclusivamente la GPU per il calcolo.
  • riduzione rumore video, da Neat video in poi…
  • gestione interfaccia video (sprechiamo risorse e memoria video della scheda visto che ne hanno già poca…)
  • Compressione in formati H264, H265 per output video.
parliamo delle CPU

Nel mercato di oggi dopo aver raggiunto una sorta di limite nella creazione di processori con Clock sempre più alti, si è passati alla creazione di wafer, strati multipli dove i diversi core si combinano tra di loro, per cui invece di avere un potentissimo motore, abbiamo la somma di tutti questi motori. La logica è inopinabile, più efficiente e potente, e in caso di danno parte del processore resta attiva e quindi funzionante, ma…

A oggi il tallone d’achille è lo sfruttamente di tali core, perchè di base il sistema operativo riceve le chiamate di calcolo dal programma, le smista ai diversi core del processore, restituisce i risultati, peccato che tale approccio sia differente e meno efficiente dell’accesso diretto dei programmi ai singoli core del processore, e quindi si perdono troppi cicli macchina in questi passaggi, inoltre se è il sistema a gestire l’assegnazione è possibile che semplici task come aprire un browser possa rubare troppe risorse ad un rendering, o ne vengano sprecate in vario modo.

Il risultato di questa gestione è che i programmi progressivamente perdono potenza, come se avessimo una macchina che ha le marce fino alla quinta, ma quando iniziamo ad accelerare ci sollevano le ruote dal terreno facendolo solo sfiorare.

Ora perchè tutto questo discorso?

Perchè contrariamente a quello che fanno credere tutti, non ci sono sempre salti proporzionali tra il valore economico di CPU e GPU e le risultanti di potenza nei programmi di editing, post, 3D, quindi si può sprecare investimenti su schede e cpu costose senza avere dei veri e propri salti prestazionali con i software.

Inoltre col fatto che spesso questi chip non sono usati al 100% dai software il rischio maggiore è quello di veder inutilizzati buona parte delle risorse.

Come verificare prima dell’acquisto cosa comprare?

Dopo anni di esperimenti ho verificato un paio di test affidabili oggi (agosto 2018), poi spero di essere smentito e vedere software da lavoro ultraottimizzati come i giochi che sfrutteranno meglio le differenze operative di CPU e GPU.

Parlo di benchmark affidabili perchè storicamente i produttori di schede video e driver hanno spesso barato per risultare ottimi nei benchmark in voga nel momento ma non nelle reali performance; è sempre stato complesso fare benchmark che offrissero indicazioni sull’uso reale, perchè i benchmark eseguono calcoli per sovraccaricare i diversi processori e strumenti dell’hardware, ma spesso gli sviluppatori di benchmark sono ottimisti, ovvero pensano che anche i programmatori dei software sfrutteranno come loro tutte le funzionalità, cosa che non accade quasi mai.

Per le GPU un buon benchmark è OctaneBench, ovvero una scena 3d calcolata esclusivamente con la GPU, tramite il motore di rendering Octane render, il risultato di benchmark e differenze tra una GPU e l’altra mi ha dato stesso riscontro utilizzando le differenti GPU su programmi come :

  • Adobe Premiere
  • Adobe After Effects
  • Davinci Resolve
  • NeatVideo denoiser
  • Avid
  • Fusion

La cosa imbarazzante sono i risultati, che potete leggere voi stessi, ovvero la differenza tra le Titan e una GTX 980ti oltre al quadruplo del prezzo è solo per la quantità di memoria a bordo, ma le performance… NO!!!
facciamo un riassunto veloce?

  1. GTX 1080ti euro 800 (di media) score 185
  2. Quadro P6000 euro 4.500 (ci sono da 6000) score 169
  3. Tesla P40 euro 7.000 score 166
  4. GTX 1080 euro 550 score 135
  5. GTX 980Ti euro 450 score 130 (posseggo la Asus Strix che fa 141 di score)
  6. Titan X euro 665 score 129
  7. Quadro P4000 euro 800 score 101
  8. Titan Black euro 1800 score 80
  9. Titan Z euro 2400 score 77

quindi contrariamente a quello che dicono la maggior parte delle persone, quando si passa al lato operativo lavorativo (NON STIAMO GIOCANDO nel vero senso del discorso) le schede considerate più performanti sono le più sfigate in un rapporto potenza prezzo, senza considerare che molti software (Resolve, Octane, Neatvideo, and more) sono capaci di sfruttare il multigpu, quindi scegliendo oculatamente la piastra del computer e le schede video, si possono ottenere performance che le superschede si possono solo che sognare mettendo 2 o più schede in parallelo. Esistono poi delle riflessioni parallele da fare in riferimento alla vecchiaia delle schede, perchè dopo qualche anno le schede non vengono più supportate nei software e quindi un investimento molto alto se non si ripaga velocemente si rischia di vederlo sparire nelle nuove versioni dei software.

Teniamo inoltre conto del fatto che pur essendo teoricamente pensate per il multiGPU le schede madri non sono pensate per usarle tutte… ovvero spesso non ci sono abbastanza lane per la distribuzione dei calcoli o banalmente pur essendo una E-Atx le schede sono troppo vicine e il problema sarà il calore generato perchè ogni scheda manda aria calda alle spalle della scheda davanti a lei e quindi il surriscaldamento sarà dietro l’angolo, e non si potrà applicare un raffreddamento a liquido perchè non c’è spazio per montare i radiatori sulle schede tra una scheda e l’altra.

Come verifico la potenza delle CPU?

per le CPU esistono ancora più benchmark e spesso inutili… perchè molti programmi non sfruttano il multicore o il multithreading, o non usano tutte le funzioni integrate, quindi una CPU dual core, ma con clock più alto offrirà all’atto finale un tempo di calcolo inferiore rispetto ad un octacore con un clock inferiore durante l’export di un file video.

Un buon benchmark per il processore è CineBench, usato anche da molte testate giornalistiche importanti per testare le performance dei computer, esso utilizza il core del motore di rendering 3d Maxon Cinema 4D, motore che testa sia l’openGl che la cpu, single core e multicore. Diventa semplice verificare tramite lo score quanto sia potente la CPU in uso singolo o combinato col Multithreading.

La cosa divertente è che usando un processore antico (Q3-2013) come un Intel i7 4930k ottengo uno score di 927. Guardando le prestazioni dei processori moderni… potrei avere qualche delusione… come potete vedere sotto la media dei processori di oggi offrono o le stesse performance o meno ancora… altrimenti si deve investire in modo consistente, e qui si vedono solo i prezzi dei processori.

  • Intel core i5 7640k euro 154, score 716
  • Intel core i7 4790k  euro 290, score 836
  • Intel core i7 7700k euro 300, score 960
  • Intel core i7 7740k euro 356, score 999
  • Intel core i7 8700k euro 326, score 1230
  • AMD 2700X euro 267, score 1964
  • Intel XEON W-2150B euro 750, score 2350
  • Intel core i9 7900x euro 850, score 2355
  • AMD 1920X euro 440, score 2428
  • Intel core i9 7940X euro 1,100, score 2929
  • AMD 1950X euro 790, score 3334
  • Intel core i9 7980XE euro 2,100, score 3920


Page 1 of 10

Powered by WordPress & Theme by Anders Norén

Translate »
error: Content is protected !!